加入收藏 | 设为首页 | 会员中心 | 我要投稿 通化站长网 (https://www.0435zz.com/)- 科技、建站、经验、云计算、5G、大数据,站长网!
当前位置: 首页 > 站长资讯 > 传媒 > 正文

微软研究院用迁移学习训练自主无人机,可用于真实环境

发布时间:2021-02-25 16:12:31 所属栏目:传媒 来源:互联网
导读:一方面,模拟数据很容易生成,但在不同的现实场景中通常呈现出不安全的行为。 能够在模拟环境中学习策略并将知识外推到真实环境中仍然是自主系统的主要挑战之一。为了推进这一领域的研究,人工智能社区为现实世界的自主系统建立了许多基准。其中最具挑战性的

一方面,模拟数据很容易生成,但在不同的现实场景中通常呈现出不安全的行为。

能够在模拟环境中学习策略并将知识外推到真实环境中仍然是自主系统的主要挑战之一。为了推进这一领域的研究,人工智能社区为现实世界的自主系统建立了许多基准。其中最具挑战性的是第一人称视角的无人机比赛。

FPV 挑战

在第一人称视角(FPV)完成的比赛中,专业飞行员能够计划、控制一个四旋翼机,使其具有很高的敏捷性,但却没有考虑安全性。微软的研究团队试图建立一个自主代理,可以在 FPV 比赛中控制无人机。

从深度学习的角度来看,导航任务中最大的挑战之一是输入图像数据的高维性和可变性。想要成功地解决这个任务,就需要一个对视觉外观不变性和对仿真与现实之间差异的鲁棒表示。从这个角度来看,能够在 FPV 比赛等环境中操作的自主代理需要接受模拟数据的训练,这些模拟数据学习可在真实环境中使用的策略。

许多这类研究,如 FPV 比赛,都集中在增强无人机的各种传感器,可以帮助建立周围环境的模型。然而,微软的研究团队旨在创造一种以人脑功能为灵感的计算结构,将视觉信息直接映射到正确的控制动作上。

为了证明这一点,微软研究院使用了一个非常基本的带有前置摄像头的四旋翼机。所有的处理都是在 Nvidia TX2 计算机上完成的,它有 6 个 CPU 核和一个集成的 GPU。现成的英特尔 T265 跟踪相机提供里程计,图像处理使用 Tensorflow 框架。图像传感器是一个 USB 摄像头,有 830 个水平视场,原始图像被缩小到 128 x 72 的尺寸。


(编辑:通化站长网)

【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容!

    热点阅读