工业物联网中的分析美学
通过工业物联网(IIoT)在通信和传感器部署方面的最新进展,使得预测性维护对于影响深远的工业设备更加可行。经过精心设计和训练以识别设备故障的基于物理的模型和机器学习系统的强大结合,也可以做出准确的预测,以预测特定设备的故障时间。 通过这种方式,工业公司不再需要通过昂贵的程序来定期进行检查或通过时间表来进行维护,这实际上是没必要的。相反,预测性维护系统可以在逻辑上优先考虑任何必要的维护,以防止故障发生,从而大大节省宝贵的时间、金钱和资源。 此过程的第一步涉及异常检测,其中网络边缘的智能传感器会检测出看起来不对劲的事情——尚不知道到底出了什么问题。下一步是对任何标记的设备执行诊断,以确定问题的根本原因。最后,预测算法可以准确估计设备何时会出现故障。
一个名为MOXI的工业物联网系统分析技术平台使工程师、操作员和维护专业人员能够远程监测和主动管理意外的系统故障和维护问题。MOXI是为制造业、电网、铁路、桥梁和其他重型基础设施等部门的大型工业资产而设计的。工业物联网套件结合了嵌入式传感、复杂的系统模型和人工智能技术,以高精度、可忽略的误报率和接近零的漏检率预测不利的系统状况。 (编辑:通化站长网) 【声明】本站内容均来自网络,其相关言论仅代表作者个人观点,不代表本站立场。若无意侵犯到您的权利,请及时与联系站长删除相关内容! |